

Triangles Stretch

21. Point T divides side QR into segments QT and RT, so that $QR = QT + RT = 26$ cm. We are told that the ratio of QT to RT is 9 to 4. That means $QT = (9/13)QR = (9/13)(26) = 18$ cm, and $RT = 26 - 18 = 8$ cm. By the geometric mean theorem, then, altitude $ST = \sqrt{(QT \times RT)} = \sqrt{(18 \times 8)} = \sqrt{144} = 12$ cm.

22. The altitude of isosceles triangle WXY drawn perpendicular to side XY intersects the side at its midpoint, creating two congruent right triangles, each with a leg of length $8/2 = 4$ cm and a hypotenuse of length 5 cm. The second leg of each right triangle is the altitude in question, with length h . We can use the Pythagorean theorem to determine h as follows: $4^2 + h^2 = 5^2 \rightarrow 16 + h^2 = 25 \rightarrow h^2 = 9 \rightarrow h = \sqrt{9} = 3$ cm. Alternatively, you might recognize that these are 3-4-5 right triangles and deduce that the length of the altitude must be 3 cm.

23. The altitude drawn perpendicular to the 10-cm side divides the isosceles triangle into congruent right triangles, each with a leg of length $10/2 = 5$ cm and a hypotenuse of length 13 cm. We can use the Pythagorean theorem to determine that this altitude, which is a shared leg of the two right triangles, has length $\sqrt{(13^2 - 5^2)} = \sqrt{(169 - 25)} = \sqrt{144} = 12$ cm. You might also recognize that these are 5-12-13 right triangles and deduce that the length of this altitude must be 12 cm. With a base of length 10 cm and height 12 cm, the triangle has area $(1/2)(10)(12) = 60$ cm². When the base is a side of length 13 cm, the triangle has height h . Since the triangle has area 60 cm², we have $60 = (1/2)(13)h$. So, $13h = 120$ and $h = 120/13$ cm. There are two sides of length 13 cm, so it follows that the three altitudes of this triangle have lengths 12 cm, $120/13$ cm and $120/13$ cm. The average of their lengths is $[(120/13) + (120/13) + 12] \div 3 = [(240 + 156)/13] \div 3 = (396/13) \div 3 = (396/13) \times (1/3) = 132/13$ cm.

24. The base of triangle PQR is side PR, and median QS divides base PR into congruent segments PS and RS. Since $PS = 9$ cm, it follows that $RS = 9$ cm and $PR = 9 + 9 = 18$ cm. We are told that triangle PQR has area 24 cm². Substituting these values into the area formula $A = (1/2)bh$, we can determine the height of triangle PQR. Doing so, we get $24 = (1/2)(18)h$. So, $9h = 24$, and $h = 24/9 = 8/3$ cm.

25. By the centroid theorem, we know that $2DG = AG$. Substituting $AG = 6x$ and $DG = 5x - 8$ into this equation, we get $2(5x - 8) = 6x$. Now solving for x gives us $10x - 16 = 6x \rightarrow 4x = 16 \rightarrow x = 4$. P

26. We are told that $NP = 5x/2 + 2$ and $KN = 19x/2$. By the centroid theorem, we know that $2NP = KP$. So, $KP = 2(5x/2 + 2) = 5x + 4$. Given that $KN = KP + NP$, it follows that $KP = KN - NP = 19x/2 - (5x/2 + 2) = 19x/2 - 5x/2 - 2 = 7x - 2$. Now we have two expressions for KP that we can set equal to each other to get $5x + 4 = 7x - 2$. Solving for x , we get $2x = 6$, and $x = 3$. Therefore, $KP = 5(3) + 4 = 15 + 4 = 19$ units. Substituting into the other expression, we can confirm that $KP = 7(3) - 2 = 21 - 2 = 19$ units.

27. The triangle formed by connecting the midpoints of the sides of a triangle, as is the case with triangle HIJ, is called a medial triangle. The ratios of corresponding sides of triangles HIJ and EFG are all 1:2, so these triangles are similar, with $HI = (1/2)EF = (1/2)(25) = 25/2$ cm, $IJ = (1/2)FG = (1/2)(17) = 17/2$ cm, and $HJ = (1/2)EG = (1/2)(26) = 13$ cm. We can determine the area of triangle HIJ by using Heron's formula, which states that a triangle with side lengths a , b and c and semiperimeter s has area $\sqrt{s(s - a)(s - b)(s - c)}$. For triangle HIJ, $s = (25/2 + 17/2 + 13)/2 = (21 + 13)/2 = 17$ cm. The area, then, is $\sqrt{[17(17 - 25/2)(17 - 17/2)(17 - 13)]} = \sqrt{[17((34 - 25)/2)((34 - 17)/2)(4)]} = \sqrt{[17(9/2)(17/2)(4)]} = \sqrt{[17(9)(17)]} = 17 \times 3 = 51$ cm². Alternatively, given that corresponding sides of triangles HIJ and EFG are all in the proportion 1:2, it follows that the areas of triangles HIJ and EFG must be in the proportion $1^2/2^2 = 1/4$. That means the area of triangle HIJ is 1/4 the area of triangle EFG. Now we can determine the area of triangle EFG, using Heron's formula, for $a = 25$, $b = 17$, $c = 26$ and $s = (25 + 17 + 26)/2 = 68/2 = 34$ cm. Triangle EFG has area $\sqrt{[34(34 - 25)(34 - 17)(34 - 17)]} = \sqrt{[34(9)(8)(17)]} = \sqrt{(2^4 \times 3^2 \times 17^2)} = 2^2 \times 3 \times 17 = 204$ cm². Therefore, the area of triangle HIJ is 1/4 that, or $1/4(204) = 51$ cm².

28. The perimeter of triangle PQR is $PQ + QR + PR$. We know that $PQ = 16$ cm. Also, $QR = QS + RS$, and we know $RS = 11$ cm and $QS = 8$ cm, so $QR = 8 + 11 = 19$ cm. Since segment PS is an angle bisector of triangle PQR, by the angle bisector theorem, we know that $PQ/PR = QS/RS$. Substituting the known values gives us $16/PR = 8/11$. Solving for PR , we get $PR = 16(11/8) = 2(11) = 22$ cm. Therefore, triangle PQR has perimeter $16 + 19 + 22 = 57$ cm.

29. Segment BE, which is an angle bisector of triangle ABC, is also an angle bisector of triangle ABD. By the angle bisector theorem, $BD/AB = DG/AG$. We know that $AB = 10$, $BC = 7$ and $AC = 11$, but we need to find BD . We know that AD is an angle bisector of triangle ABC, so by the angle bisector theorem, $AB/AC = BD/CD$, and we have $10/11 = BD/CD$. Given that $BC = BD + CD = 7$, we now know that $BD = (10/21)BC = (10/21)(7) = 10/3$. So, the ratio of DG to AG is $BD/AB = (10/3)/10 = 1/3$.

30. Since $AB = AD + BD$, and we are told that $AB = 15$ cm and $BD = 6$ cm, we can determine that $AD = 15 - 6 = 9$ cm. Additionally, segments from a single exterior point of a circle to two different points of tangency on the circle are congruent. Thus, $BD = BE = 6$ cm, $AD = AF = 9$ cm and $CE = CF$. And since $BC = BE + CE$, it follows that $CE = 14 - 6 = 8$ cm = CF . Finally, $AC = AF + CF = 9 + 8 = 17$ cm.