

COMPETITION COACH TOOLKIT

This is a collection of lists, formulas and terms that Mathletes frequently use to solve problems like those found in this handbook. There are many others we could have included, but we hope you find this collection to be a useful reference.

Fraction	Decimal	Percent
$\frac{1}{2}$	0.5	50
$\frac{1}{3}$	0. $\bar{3}$	33. $\bar{3}$
$\frac{1}{4}$	0.25	25
$\frac{1}{5}$	0.2	20
$\frac{1}{6}$	0.1 $\bar{6}$	16. $\bar{6}$
$\frac{1}{8}$	0.125	12.5
$\frac{1}{9}$	0. $\bar{1}$	11. $\bar{1}$
$\frac{1}{10}$	0.1	10
$\frac{1}{11}$	0. $\bar{0}\bar{9}$	9.09
$\frac{1}{12}$	0.08 $\bar{3}$	8. $\bar{3}$

n	n^2	n^3
1	1	1
2	4	8
3	9	27
4	16	64
5	25	125
6	36	216
7	49	343
8	64	512
9	81	729
10	100	1000
11	121	1331
12	144	1728
13	169	2197
14	196	2744
15	225	3375

Common Arithmetic Series

$$1 + 2 + 3 + 4 + \dots + n = \frac{n(n + 1)}{2}$$

$$1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2$$

$$2 + 4 + 6 + 8 + \dots + 2n = n^2 + n$$

Prime Numbers

2	43
3	47
5	53
7	59
11	61
13	67
17	71
19	73
23	79
29	83
31	89
37	97
41	

Combinations & Permutations

$${}_nC_r = \frac{n!}{r!(n - r)!}$$

$${}_nP_r = \frac{n!}{(n - r)!}$$

Difference of Squares

$$a^2 - b^2 = (a + b)(a - b)$$

Distance Traveled

$$\text{Distance} = \text{Rate} \times \text{Time}$$

Geometric Mean

$$\frac{a}{x} = \frac{x}{b} \quad \text{and} \quad x = \sqrt{ab}$$

Sum & Difference of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Binomial Theorem

$$(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Quadratic Formula

For $ax^2 + bx + c = 0$, where $a \neq 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Parity of Sums, Differences & Products

even \pm even = even

odd \pm odd = even

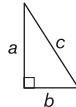
even \pm odd = odd

even \times even = even

odd \times odd = odd

even \times odd = even

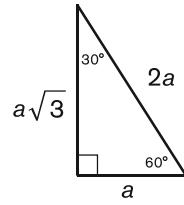
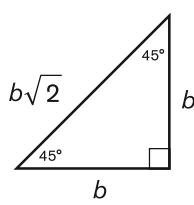
Triangular Numbers


$$T_n = \sum_{k=1}^n k$$

CirclesCircumference
 $2\pi r = \pi d$ Area
 πr^2 For radius r

Arc Length

 $\frac{x}{360}(2\pi r)$



Sector Area

 $\frac{x}{360}(\pi r^2)$ For central angle
of x degrees**Pythagorean Theorem**

$$a^2 + b^2 = c^2$$

Pythagorean Triples

- (3, 4, 5)
- (5, 12, 13)
- (7, 24, 25)
- (8, 15, 17)
- (9, 40, 41)
- (12, 35, 37)

Special Right Triangles30-60-90
Right Triangle45-45-90
Right Triangle**Area of Polygons**Square side length s s^2 Rectangle length l , width w lw Parallelogram base b , height h bh Trapezoid bases b_1, b_2 , height h $\frac{1}{2}(b_1 + b_2)h$ Rhombus diagonals d_1, d_2 $\frac{1}{2}d_1d_2$ Triangle base b , height h $\frac{1}{2}bh$ Triangle *Heron's formula* semiperimeter s , side lengths a, b, c $\sqrt{s(s-a)(s-b)(s-c)}$ Equilateral Triangle side length s $\frac{s^2\sqrt{3}}{4}$ **Triangle Inequality**For a triangle with side lengths a, b and c :

$$\begin{aligned} a + b &> c \\ a + c &> b \\ b + c &> a \end{aligned}$$

Given $A(x_1, y_1)$ and $B(x_2, y_2)$ Distance from A to B = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint of \overline{AB} = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Slope of \overline{AB} = $\frac{y_2 - y_1}{x_2 - x_1}$

Polygon Angles $(n \text{ sides})$

Sum of the interior angle measures:

$$180(n - 2)$$

Central angle measure of a regular polygon:

$$\frac{360}{n}$$

Interior angle measure of a regular polygon:

$$\frac{180(n - 2)}{n} \quad \text{or} \quad 180 - \frac{360}{n}$$

Equation of a Line

Standard Form

$$Ax + By = C$$

Slope-Intercept Form

$$y = mx + b$$

 $m = \text{slope}$ $b = y\text{-intercept}$

Point-Slope Form

$$y - y_1 = m(x - x_1)$$

 $m = \text{slope}$ $(x_1, y_1) = \text{point on the line}$

Solid	Dimensions	Surface Area	Volume
Cube	side length s	$6s^2$	s^3
Rectangular Prism	length l , width w , height h	$2(lw + wh + lh)$	lwh
Cylinder	circular base radius r , height h	$2\pi rh + 2\pi r^2$	$\pi r^2 h$
Cone	circular base radius r , height h	$\pi r^2 + \pi r \times \sqrt{r^2 + h^2}$	$\frac{1}{3}\pi r^2 h$
Sphere	radius r	$4\pi r^2$	$\frac{4}{3}\pi r^3$
Pyramid	base area B , height h		$\frac{1}{3}Bh$

Vocabulary & Terms

The following list is representative of terminology used in the problems but **should not** be viewed as all-inclusive. It is recommended that coaches review this list with their Mathletes.

absolute difference	function	range of a function
absolute value	GCF (GCD)	rate
acute angle	geometric sequence	ratio
additive inverse (<i>opposite</i>)	hemisphere	rational number
adjacent angles	image(s) of a point(s) <i>(under a transformation)</i>	ray
apex	improper fraction	real number
arithmetic mean	infinite series	reciprocal (<i>multiplicative inverse</i>)
arithmetic sequence	inscribe	reflection
base ten	integer	regular polygon
binary	interior angle of a polygon	relatively prime
binomial theorem	intersection	revolution
bisect	inverse variation	right angle
box-and-whisker plot	irrational number	right polyhedron
center	isosceles	rotation
chord	lateral edge	scalene triangle
circumscribe	lateral surface area	scientific notation
coefficient	lattice point(s)	sector
collinear	LCM	segment of a circle
common divisor	median of a data set	segment of a line
common factor	median of a triangle	semicircle
common fraction	mixed number	semiperimeter
complementary angles	mode(s) of a data set	sequence
congruent	multiplicative inverse (<i>reciprocal</i>)	set
convex	natural number	significant digits
coordinate plane/system	obtuse angle	similar figures
coplanar	ordered pair	slope
counting numbers	origin	space diagonal
counting principle	palindrome	square root
diagonal of a polygon	parallel	stem-and-leaf plot
diagonal of a polyhedron	Pascal's Triangle	supplementary angles
digit sum	percent increase/decrease	system of equations/inequalities
dilation	perpendicular	tangent figures
direct variation	planar	tangent line
divisor	polyhedron	term
domain of a function	polynomial	transformation
edge	prime factorization	translation
equiangular	principal square root	triangle inequality
equidistant	proper divisor	triangular numbers
expected value	proper factor	trisect
exponent	proper fraction	twin primes
exterior angle of a polygon	quadrant	union
factor	quadrilateral	unit fraction
finite	random	variable
frequency distribution	range of a data set	whole number
frustum		<i>y</i> -intercept

Forms of Answers

The following rules explain acceptable forms for answers. Coaches should ensure that Mathletes are familiar with these rules prior to participating at any level of competition. Competition answers will be scored in compliance with these rules for forms of answers.

Units of measurement are not required in answers, but they must be correct if given. When a problem asks for an answer expressed in a specific unit of measure or when a unit of measure is provided in the answer blank, equivalent answers expressed in other units are not acceptable. For example, if a problem asks for the number of ounces and 36 oz is the correct answer, 2 lb 4 oz will not be accepted. If a problem asks for the number of cents and 25 cents is the correct answer, \$0.25 will not be accepted.

The plural form of the units will always be provided in the answer blank, even if the answer appears to require the singular form of the units.

Geometric figures may not be drawn to scale and lengths of geometric figures should be assumed to be measured in “units” unless otherwise stated.

All answers must be expressed in simplest form. A “common fraction” is to be considered a fraction in the form $\pm \frac{a}{b}$, where a and b are natural numbers and $\text{GCF}(a, b) = 1$. In some cases the term “common fraction” is to be considered a fraction in the form $\frac{A}{B}$, where A and B are algebraic expressions and A and B do not have a common factor. A simplified “mixed number” (“mixed numeral,” “mixed fraction”) is to be considered a fraction in the form $\pm N\frac{a}{b}$, where N , a and b are natural numbers, $a < b$ and $\text{GCF}(a, b) = 1$. Examples:

Problem: What is $8 \div 12$ expressed as a common fraction?

Answer: $\frac{2}{3}$

Unacceptable: $\frac{4}{6}$

Problem: What is $12 \div 8$ expressed as a common fraction?

Answer: $\frac{3}{2}$

Unacceptable: $\frac{12}{8}$, $1\frac{1}{2}$

Problem: What is the sum of the lengths of the radius and the circumference of a circle of diameter $\frac{1}{4}$ unit expressed as a common fraction in terms of π ?

Answer: $\frac{1+2\pi}{8}$

Problem: What is $20 \div 12$ expressed as a mixed number?

Answer: $1\frac{2}{3}$

Unacceptable: $1\frac{8}{12}$, $\frac{5}{3}$

Ratios should be expressed as simplified common fractions unless otherwise specified. Examples:

Acceptable Simplified Forms: $\frac{7}{2}, \frac{3}{\pi}, \frac{4-\pi}{6}$

Unacceptable: $3\frac{1}{2}, \frac{1}{3}, 3.5, 2:1$

Radicals must be simplified. A simplified radical must satisfy: 1) no radicands have a factor which possesses the root indicated by the index; 2) no radicands contain fractions; and 3) no radicals appear in the denominator of a fraction. Numbers with fractional exponents are *not* in radical form. Examples:

Problem: What is $\sqrt{15} \times \sqrt{5}$ expressed in simplest radical form?

Answer: $5\sqrt{3}$

Unacceptable: $\sqrt{75}$

Answers to problems asking for a response in the form of a dollar amount or an unspecified monetary unit (e.g., “How many dollars...,” “How much will it cost...,” “What is the amount of interest...”) should be expressed in the form (\$)*a.bc* or *a.bc* (dollars), where *a* is an integer and *b* and *c* are digits. The *only* exceptions to this rule are when *a* is zero, in which case it may be omitted, or when *b* and *c* are both zero, in which case they both may be omitted. Answers in the form (\$)*a.bc* or *a.bc* (dollars) should be rounded to the nearest cent, unless otherwise specified. Examples:

Acceptable Forms: 2.35, 0.38, .38, 5.00, 5

Unacceptable: 4.9, 8.0

Do not make approximations for numbers (e.g., π , $\frac{2}{3}$, $5\sqrt{3}$) in the data given or in solutions unless the problem says to do so.

Do not do any intermediate rounding (other than the “rounding” a calculator performs) when calculating solutions. All rounding should be done at the end of the calculation process.

Scientific notation should be expressed in the form $a \times 10^n$ where a is a decimal, $1 \leq |a| < 10$, and n is an integer. Examples:

Problem: What is 6895 expressed in scientific notation?

Answer: 6.895×10^3

Problem: What is 40,000 expressed in scientific notation?

Answer: 4×10^4 or 4.0×10^4

An answer expressed to a greater or lesser degree of accuracy than called for in the problem will not be accepted. Whole-number answers should be expressed in their whole-number form. Thus, 25.0 will not be accepted for 25, and 25 will not be accepted for 25.0.